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We investigate the ratchet dynamics of solitons of a sine-Gordon system with additive inhomogeneities. We
show by means of a collective coordinate approach that the soliton moves like a particle in an effective
potential which is a result of the inhomogeneities. Different degrees of freedom of the soliton are used as
collective coordinates in order to study their influence on the motion of the soliton. The collective coordinates
considered are the soliton position, its width and offset, and the height of the spikes that appear on the soliton.
The results of the theory are compared with numerical simulations of the full system.

DOI: 10.1103/PhysRevE.79.036601 PACS number�s�: 05.45.Yv, 05.10.�a

I. INTRODUCTION

Rectification phenomena like the ratchet effect appear in
various fields ranging from nanodevices to biophysics �1–4�.
A simple model is a pointlike particle which is driven by
deterministic or nonwhite stochastic forces with zero time
average. If a temporal or spatial symmetry is broken, direc-
tional motion is possible. These particles can be generalized
to spatially extended solitons. These are nonlinear waves
which appear as solutions for certain equations, such as, for
example, nonlinear Klein-Gordon equations. It has been
shown for such systems that a ratchet effect is possible �5–9�.

One possibility to break the temporal symmetry is to ap-
ply a biharmonic driving force �10,11�. Such a ratchet has
been experimentally implemented in an annular Josephson
junction �12� where the behavior of the fluxons, which act as
solitons, can be modeled by sine-Gordon systems. Josephson
junctions are very appropriate to study soliton ratchets since
the motion of the fluxon can easily be measured as a voltage.
Because of the Josephson equations, the voltage is propor-
tional to the average velocity of the fluxon, which is the most
important measure in the case of the ratchet. The biharmonic
driving force was accomplished with microwaves. The de-
tails of this motion could be clarified by means of a collec-
tive coordinate theory �13,14�.

The spatial symmetry can be broken by introducing inho-
mogeneities into the Klein-Gordon system, for example
pointlike inhomogeneities modeled by � functions �15,16� if
the size of the inhomogeneities is much smaller than the
characteristic length of the system �the Josephson penetration
depth in the case of Josephson junctions�. Instead of � func-
tions, box-shaped inhomogeneities have also successfully
been used �17�. To facilitate the ratchet effect, � functions or
boxes are arranged in periodically repeated cells, where each
cell contains an asymmetric array of inhomogeneities. This
results in an asymmetric effective potential appearing in the
collective coordinate theory. These kinds of inhomogeneities
can be implemented experimentally by microshorts and mi-

croresistors in a long Josephson junction �18�.
Recently, another way to break the spatial symmetry in a

long Josephson junction has been used �19�. A constant cur-
rent has been injected in a small region of an annular Joseph-
son junction and extracted from the same electrode along the
rest of the junction. This results in an asymmetric sawtooth
potential. The velocity of the soliton can be calculated from
the measured voltage. Surprisingly high voltages, which
would correspond to 90% of the Swihart velocity �the maxi-
mum velocity in a Josephson junction�, have been reported.
In case of an ideal ratchet, the particle �or here the soliton�
would move with unit velocity during one-half of the driving
period and would not move during the second half when the
driving force acts in the other direction. �Referring to the
Josephson contact, this velocity is normalized with the Swi-
hart velocity.� This results in an average velocity of 0.5,
which thus represents an upper limit. Thus the high velocity
value of 0.9 is doubtful and it is in question whether the
measured voltage can really be interpreted as the velocity. In
contrast to the experiment, we derive the velocity of the soli-
ton from its calculated trajectory.

The aim of this paper is to study the ratchet mechanism in
the case of additive inhomogeneities by means of a collective
coordinate theory. In Sec. II we begin by introducing the
inhomogeneous sine-Gordon system that describes the ex-
periment. In Sec. III numerical simulations of this system are
shown in order to gain a first impression of how this system
behaves and to understand the Ansätze that we make within
the collective coordinate theory. In Sec. IV the collective
coordinate theory is developed for these different Ansätze,
which lead to sets of coupled ordinary differential equations
for the chosen collective coordinates. These equations de-
scribe the dynamics of the soliton that moves in an effective
potential. This potential depends on the shape of the inho-
mogeneities. Finally, the results are summarized in Sec. V.

II. INHOMOGENEOUS SINE-GORDON SYSTEM

As noted above, a ratchet effect has recently been ob-
tained experimentally with Josephson junctions by injecting
a current into the junction �19�. This system can be described
by a perturbed sine-Gordon equation �19�,*Vera.Stehr@Uni-Bayreuth.de
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�tt − �xx + sin � = − ��t + f�t� + g�x� , �1�

where ��x , t� is a scalar field and �x and �t are partial de-
rivatives with respect to space and time. The terms on the
right-hand side of the equation are perturbations. The first
term is a dissipative term with the damping coefficient �. f�t�
is an external driving force whose temporal average van-
ishes. We have used a simple sine-shaped driving field,

f�t� = A sin��t� , �2�

with amplitude A and frequency �. This corresponds to an ac
bias current in the experiment. The inhomogeneity function
g�x� corresponds to the injected current that allows for the
ratchet effect. g takes two values: a high positive one �g1� in
a small region with the width w and a small negative one
�−g2� in the rest of the cell of total length L. This cell is
repeated periodically:

g�x� = �g1 for nL � x � nL + w ,

− g2 for nL + w � x � �n + 1�L ,
� �3�

where n is an integer number. The spatial average of g must
vanish, which results in g1w=g2�L−w�.

III. SIMULATIONS

In order to get a first impression of the behavior of the
system, simulations of the full perturbed sine-Gordon system
were performed. Equation �1� was discretized with respect to
the spatial coordinate x, and the resulting system of ordinary
differential equations was solved by using the Heun or
Runge-Kutta algorithm. The step sizes for the temporal and
the spatial coordinates were �t=0.01 and �x=0.05, respec-
tively. � was initialized with the kink soliton solution of the
unperturbed sine-Gordon equation �Eq. �1� without the terms
on the right-hand side�:

��x,t� = 4 arctan exp� x − vt
�1 − v2	 �4�

with the kink velocity v. In order to have a better numerical
stability periodic boundary conditions were used.

Figure 1 shows a simulation of Eq. �1� with a set of pa-
rameters for which a directional motion of the kink occurs.
The field � depending on x /L and t /T is plotted. L is the
spatial period length of the inhomogeneity function g�x� and
T=2	 /� is the temporal period of the driving f�t�. The kink
moves one spatial period per driving period in the negative
direction. In addition to the movement of the kink centre in
the x direction, the whole kink moves up and down with the
period of the driving. Furthermore, the width of the kink
�i.e., the width of the 2	 step� changes during the motion. In
order to determine the kink position, the kink was fitted with
the function

�fit = 4 arctan exp� x − X

l
	 + 
 �5�

with the three fit parameters of kink center position X, kink
width l, and kink offset 
. Figure 2 shows the temporal de-
velopment of the fit parameters for the kink in Fig. 1.

Figure 3 shows the kink a certain time after the initializa-
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FIG. 1. �Color online� Simulation of Eq. �1�. Parameters of the
inhomogeneities, L=21.8, w=0.14, g1=15.9; parameters of the
driving force, A=0.4, �=0.025.
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FIG. 2. Temporal development of the three fit parameters �posi-
tion X, width l, and offset 
� from Eq. �5� for the kink in Fig. 1.
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FIG. 3. The kink 300 time units after the initialization with Eq.
�4�. The thin line is a fit with Eq. �5�. The parameters are the same
as in Fig. 1.
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tion with the unperturbed kink, Eq. �4�. Also a fit with Eq.
�5� is shown. The inhomogeneities g cause sharp peaks on
the kink. They appear at the beginning of the cells where the
high, narrow, positive boxes with the height g1 are located.
These spikes are stationary and do not move when the kink
center moves.

For higher amplitudes, pairs of kinks and antikinks are
generated which evolve from the spikes. The kinks move to
the right and the antikinks to the left. When the kinks and
antikinks from neighboring spikes meet, the whole kink is
lifted by 2	. In such a case no ratchet effect can be observed.
Furthermore, the collective coordinate theory cannot be ap-
plied. This is why the choice of parameters for the inhomo-
geneity and the driving is restricted to cases where no gen-
eration of kink-antikink pairs is possible. As low damping
facilitates the generation, the system is studied in the case of
strong damping with the damping coefficient �=1. Never-
theless, additional kinks and antikinks already appear for
relatively low driving amplitudes of less than 1. This is a
difference from systems with multiplicative inhomogeneities
�15–17�. Hence the decisive factor for our problem is the fact
that the inhomogeneities are additive. This can be understood
with the aid of the pendulum model for the sine-Gordon
equation �20,21�. The multiplicative inhomogeneities corre-
spond to a locally enhanced restoring force for some of the
pendulums. The additive inhomogeneities, however, corre-
spond to a static displacement of some pendulums. That is
why the spikes appear, and this of course helps the rollover
of the pendulum chain. This rollover corresponds to the gen-
eration of a kink-antikink pair.

This easy kink-antikink generation that appears in the
model described by Eq. �1� could be the reason for the high
voltage measured in the experiment in �19� since the super-
conductor becomes locally normal-conducting. Yet it was ob-
served in the simulations that for the higher frequencies
which were used in the experiment it is possible that neigh-
boring kinks and antikinks do not run into each other, since
the direction of the driving and therefore the direction of the
kink-antikink movement changes after a very short time so
that the kinks and antikinks do not meet and lift the kink.

As shown above, three parameters are used in Eq. �5� to
fit the kink in the simulation. It is suggestive to use these
parameters as collective coordinates in the theory. The influ-
ence of each of these variables on the motion of the kink is
analyzed in the following section. Furthermore the influence
of the spikes that develop on the kink �Fig. 3� and their
temporal change in height are studied.

IV. COLLECTIVE COORDINATE THEORIES

In this section a collective coordinate analysis of the soli-
ton motion is presented. The idea of this technique for treat-
ing soliton-bearing equations is to presume that perturbations
of the system mainly influence the motion of the soliton
center and perhaps a few other parameters. That is why the
degrees of freedom of the full system can be drastically re-
duced by deriving coupled equations of motion for the col-
lective coordinates. �See �22� for a review and further refer-
ences.� In the following Ansätze different collective
coordinates are presented.

A. One collective coordinate

The simplest Ansatz contains just the kink center position
X�t� as a collective coordinate �1CC Ansatz�. The traveling
wave form ��x−vt� is generalized to ��x−X�t�) �general-
ized traveling wave Ansatz�. The soliton corresponds to a
relativistic particle. With the Ansatz

��x,t� = 4 arctan exp� x − X�t�
�1 − Ẋ�t�2	 �6�

and the so-called adiabatic approach, first proposed by
McLaughlin and Scott �18�, the equation of motion can be
derived with the aid of conservation laws. This leads to

�3M0Ẍ + ��M0Ẋ = − qf�t� −
�U

�X
, �7�

where M0=8 and q=2	 are the soliton rest mass and topo-

logical charge, respectively. �−1= �1− Ẋ2�1/2 is the Lorentz
factor and

−
�U

�X
= 


−�

�

dx
��

�X
g�x� �8�

is the force due to an effective potential U. This potential
cannot be calculated analytically, however. Figure 4 shows a
numerical calculation. If g�x� is not symmetric, i.e., if the
regions with g�x�=g1 and g�x�=g2 have not the same width
�w�L /2�, U is asymmetric as required for a ratchet effect.
The smaller w �the region with g�x�=g1�, the stronger the
asymmetry.

Figure 5 shows the movement of the kink due to the ef-
fective potential. In the plotted example, the kink moves six
spatial periods into the negative direction during the first half
of the driving period. When the driving, Eq. �2�, changes its
sign in the second half period, the kink cannot move back
because it cannot overcome the steep side of U. This trajec-
tory was confirmed by a full simulation.

Figure 6 shows the average velocity �dX /dt� of the soliton
depending on the amplitude A of the driving force, Eq. �2�.
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FIG. 4. Effective potential U depending on the kink position X
and the width w of the positive box of g�x� with value g1. Here
g1w=2=const.
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The staircase structure is typical for ratchet systems in gen-
eral �23� and has been observed for other soliton ratchets
�17�. Since the soliton �or particle� travels an integer number
n of spatial periods L within the effective potential during an
integer number m of temporal periods T=2	 /� of the driv-
ing, this staircase is described by


 dX

dt
� =

nL

mT
=

n

m

L�

2	
. �9�

In the depicted case the soliton moves an integer number of
L �n ranging from 1 to 7� during each driving period. This is
why the height of the stairs always equals L� / �2	�. For
other sets of parameters, so-called devil’s staircases �24�
have also been found, where the average velocity of the soli-
ton changes over a cascade of rational multiples of L� / �2	�.

The number of steps depends strongly on the driving fre-
quency. For small frequencies �as in Fig. 6�, many steps ap-
pear. For increasing � the step height increases �compare Eq.

�9��, and the number of steps decreases accordingly.
The comparison of the average velocities determined by

the theory and the simulation, respectively, allows estimation
of the quality of the Ansatz that has been used. One sees that
the ratchet effect is correctly predicted by this simplest An-
satz with just one collective coordinate. In contrast to cases
where this Ansatz has been applied to other sine-Gordon
ratchets �15,16�, even the quantitative agreement is quite
good. For small amplitudes, the positions of the steps are
correctly predicted. Only for higher amplitudes, the steps
occur for slightly too large values of A. This also applies for
other sets of parameters for the inhomogeneities and the
driving.

B. Two collective coordinates

As already seen in the simulation in Sec. III, the width l of
the kink is not constant. In the unperturbed case the width is
subjected to only a Lorentz contraction. But in the perturbed
case, the width is also influenced by the terms on the right-
hand side of Eq. �1� �compare Fig. 2�. Adding the kink width
l as a second degree of freedom leads to the Ansatz

��x,t� = 4 arctan exp� x − X�t�
l�t�

	 . �10�

This is the so-called Rice Ansatz. It was first applied to sine-
Gordon and �4 solitons to study their internal modes �25�.
This Ansatz is not an exact solution, not even for the unper-
turbed sine-Gordon equation. Nevertheless it has proven to
be effective, e.g., for the analysis of resonances in the �4

equation �26,27�. Furthermore its excellent adequacy for
sine-Gordon systems with multiplicative inhomogeneities
has already been shown �15–17�. Strictly speaking l is half of
the width of the kink, but, for simplicity, l is referred to as
the kink width.

Applying the collective coordinate theory together with
this Ansatz yields the two coupled equations of motion

M0l0
Ẍ

l
+ �M0l0

Ẋ

l
− M0l0

Ẋl̇

l2 = − qf�t� −
�U

�X
, �11�


M0l0
l̈

l
+ �
M0l0

l̇

l
+ M0l0

Ẋ2

l2 = Kint,2CC −
�U

�l
, �12�

with

Kint,2CC =
M0l0

2

Ẋ2 + 1

l2 +

M0l0

2

l̇2

l2 −
M0

2l0
, �13�

where l0=1 is the width of the static kink and 
=	2 /12.
These equations describe the motion of the center of mass
and the expansion of a spatially deformable particle that is
driven by a force −qf�t� in the effective potential U�X , l� that
is caused by the inhomogeneities g�x� and dissipates energy
because of friction. The equations of motion are coupled, i.e.,
the collective coordinates influence each other. Hence there
is an exchange of energy between the kinetic energy of the
centre of mass and the internal energy of the kink. Similar to
the 1CC Ansatz, one obtains for the effective potential
U�X , l�
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FIG. 5. Trajectory of the kink �left� and the effective potential
�right� that the soliton moves in. Calculated with the 1CC Ansatz.
Parameters: L=21.8, w=0.14, g1=15.9, �=0.005, A=0.53.
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−
�U

�p
= 


−�

�

dx
��

�p
g�x� with p = X,l . �14�

Figure 7 shows the effective potential depending on the
kink position X for different values of the kink width l. The
smaller l, the steeper becomes the steep side of the potential,
whereas the slope of the flat side does not change. That is
why the potential is higher for small values of l and vanishes
if l is of the order of the spatial period length L of the inho-
mogeneity function g�x� and U. This relation between U and
l is different from the sine-Gordon system with multiplica-
tive inhomogeneities �16�. There U decreased if l decreased.
Furthermore, the shape of U changed with l: For small l
there were additional small local maxima on the flat side of
the potential. In the system with additive inhomogeneities
studied here such effects are not observed even for strong
changes of l.

Surprisingly, the kink width l as additional degree of free-
dom does not influence the trajectory of the kink. It was
shown for sine-Gordon systems with multiplicative inhomo-
geneities that this second collective coordinate was crucial
for quantitatively good results �15,16�. However, in the case
of additive inhomogeneities, the kink width as a second de-
gree of freedom does not improve the already quite good
1CC Ansatz.

A further possible Ansatz with two collective coordinates
contains the kink offset 
�t� instead of the kink width l:

��x,t� = 4 arctan exp� x − X�t�
�1 − Ẋ2�t�

	 + 
�t� . �15�

This offset is similar to the phonon dressing of the kink
introduced in �28� that was caused by the driving. It was
shown there that the dressing changes the shape of the kink
and increases the coupling of the kink position and its width.
However, this dressing was not studied as a degree of free-
dom.

Applying the theory now leads to the coupled equations
of motion

�3M0Ẍ + ��M0Ẋ = − q sin 
 −
�U

�X
, �16�


̈ + �
̇ + sin 
 − f�t� = 0. �17�

It turns out that the effective potential does not depend on 
.
U is the same as in the 1CC case, Sec. IV A. Equation �17�
describes a damped oscillation. If 
 is small so that sin 

�
, it can be evaluated further. After a transient time that
depends on � one gets


 = Â sin��t − �� �18�

with the amplitude

Â =
A

��1 − �2�2 + ����2
�19�

and the phase shift

� = arctan
��

1 − �2 . �20�

In the case of small 
 Eq. �16� changes to

�3M0Ẍ + ��M0Ẋ = − qÂ sin��t − �� −
�U

�X
. �21�

The only difference between this equation and Eq. �7� is that

the driving f�t�=A sin��t� is replaced by Â sin��t−��. Thus
the driving acts with an effectively larger amplitude and a
phase shift. The phase shift is confirmed by simulations.
However, the change of the amplitude is too small to be
visible in a simulation.

If A is not small, the linearization of sin 
 is not possible.
A comparison between Eq. �16� and the 1CC Eq. �7� shows
that the driving force Fac=−qf�t� is replaced by the effective
driving force Fac,eff=−q sin 
. If A is large, 
 is also large;
sin 
, however, is limited to values between −1 and 1.
Hence, for increasing A the additional energy of the driving
no longer supports the traveling of the kink but only the up
and down motion.

Comparison of the trajectories calculated with this Ansatz
and those calculated with the simple 1CC Ansatz reveals that
the kink offset as a second collective coordinate has no in-
fluence on the motion of the kink either. Consequently the
quantitative description of the ratchet effect is not improved.

C. Three collective coordinates

It is possible to combine all three collective coordinates
introduced so far in one Ansatz:

��x,t� = 4 arctan exp� x − X�t�
l�t�

	 + 
�t� . �22�

Application of the collective coordinate theory now results in
the three coupled equations of motion

M0l0
Ẍ

l
+ �M0l0

Ẋ

l
− M0l0

Ẋl̇

l2 = − q sin 
 −
�U

�X
, �23�


M0l0
l̈

l
+ �
M0l0

l̇

l
+ M0l0

Ẋ2

l2 = Kint,3CC −
�U

�l
, �24�
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FIG. 7. Effective potential depending on the kink position for
different values of the kink width. Parameters: L=21.8, w=0.14,
g1=15.9.
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̈ + �
̇ + sin 
 − f�t� = 0, �25�

with

Kint,3CC = Kint,2CC +
M0

2l0
�1 − cos 
� . �26�

Equation �25� is the same as Eq. �17�, which was derived
without the collective coordinate l, and was already dis-
cussed above. The only difference between Eqs. �23� and
�11� �derived without 
� is that now the driving Fac=−qf�t�
is replaced by the effective driving Fac,eff=−q sin 
. The con-
sequences were also already mentioned above. In Eq. �24�
the only difference from Eq. �12� �without 
� is the differ-
ence between Kint,2CC, Eq. �13�, and Kint,3CC, Eq. �26�.

In order to estimate the influence of the change in Kint, an
approximation for the homogeneous case with g�x�=0,
strong damping ��=1�, small driving frequencies ���1�,
and small driving amplitude is performed. As 
̈ and 
̇ are of
higher order than sin 
 and f�t� with respect to �, these
terms can be neglected and Eq. �25� becomes

sin 
 = f�t� . �27�

With this equation and the definition

P�t� ª M0l0
Ẋ

l
, �28�

Eq. �23� �with U=0� can be written as

Ṗ + �P = − qf�t� . �29�

As Ṗ is of higher order than P with respect to �, it can be
neglected. Furthermore, we assume that l oscillates in the

same order with respect to � as f�t�. In that case l̇ and l̈ are
of higher order and can also be neglected in Eqs. �24� and
�26�. Equation �24� then simplifies to

M0l0
Ẋ2

l2 =
M0l0

2

Ẋ2 + 1

l2 −
M0

2l0
+

M0

2l0
�1 − cos 
� . �30�

This leads to

l0
2

l2 = 1 +
P2

M0
2 − 2 sin2 


2
= 1 + 0.06A2�1 − cos�2�t�� �31�

with M0=8, q=2	, and �=1. Therefore l oscillates with the
frequency 2� around the average value

�l� =
l0

�1 + 0.06A2
. �32�

The maximum value is l0. This is confirmed by a simulation.
For small A, the difference from the Ansatz with one collec-
tive coordinate �Sec. IV A� is rather small. With some Taylor
approximations one gets

l = l0�1 −
1

2
CA2 +

1

2
CA2 cos�2��t��	 . �33�

Hence the amplitude of l is 1
2CA2 with

C =
q2

2�2M0
2 −

1

4
. �34�

For the trajectory one gets

X =
qA

�M0�
��1 −

3

4
CA2	cos��t�

+
1

12
CA2 cos�3��t��� + X0. �35�

X oscillates with the frequency �. The oscillation with fre-
quency 3� is not observable as the term is quite small. The
frequency and the amplitude of X agree very well with the
simulation. For l the amplitude calculated here approxi-
mately is only about half as large as the value determined by
a simulation, but the order of magnitude is predicted cor-
rectly.

For high amplitudes, the approximations made above no
longer hold. Figure 8 shows a comparison of the new 3CC
Ansatz and the 2CC Ansatz �with X and l� with a simulation
for g�x��0. The amplitude A=1 is chosen because for A
�1 the simulation of the oscillation of l shows an additional
maximum at the position where a minimum appears in the
case of smaller amplitudes. It is even higher than l0. Though
the exact value of this maximum differs between theory and
simulation, this effect is predicted by the 3CC Ansatz in con-
trast to all other Ansätze made so far. For the collective co-
ordinate 
 the accordance between simulation and the two
Ansätze is very good even quantitatively. Whereas the ampli-
tude of the 2CC trajectory is a little too small compared to
the simulation, the amplitude of the 3CC trajectory is too
large by about the same amount.

Figure 9 shows the average velocity of the kink deter-
mined with the 3CC theory for the inhomogeneous case with
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g�x��0. The agreement between theory and simulation has
improved considerably compared to the 1CC and 2CC theo-
ries �cf. Fig. 6�. The agreement between theory and simula-
tion is now quite good even for higher amplitudes. In this
3CC Ansatz no new collective coordinate is introduced com-
pared to the two 2CC Ansätze with X and l and X and 
,
respectively. The only new feature is that here all three
coordinates—X, l, and 
—are combined. Thus the crucial
point seems to be the interplay between the three degrees of
freedom.

D. Influence of the spikes

As already seen in the simulations �Sec. III�, the inhomo-
geneity function g�x� causes peaks on the kink �Fig. 3�. The
height of these peaks changes periodically. In order to test if
these peaks have an influence on the kink movement, the
height is introduced as a collective coordinate.

First of all the shape of the peaks has to be determined. A
small perturbation ����1 is added to the kink solution �K:

��x,t� = �K�x,t� + ��x,t� . �36�

This is put into the perturbed sine-Gordon equation �1�. As
the peaks also appear on the static kink, only the static case
of this equation is considered. With some approximations
one gets

− �xx + � = g�x� . �37�

In order to produce a strongly asymmetric effective potential,
the width w of the region where g�x�=g1 should be small �cf.
Fig. 4�. In such a case g can be approximated as a � function.
One has to take into account that the spatial average of g
must vanish. Therefore g can be approximated as

g�x� = −
k

L
+ �

n

�k��x − nL�� , �38�

where k=g1w=g2�L−w� is the area of one of the two boxes
the inhomogeneity cell is built from. Solving Eq. �37� with
Eq. �38� leads to

��x� =
k

2�
n

e−�x−nL� −
k

L
. �39�

The Ansatz for the collective coordinate calculation now
reads

��x,t� = 4 arctan ex−X�t� + p�t�� k

2�
n

e−�x−nL� −
k

L	 . �40�

For simplicity, this Ansatz is nonrelativistic. p is the new
collective coordinate which is proportional to the height of
the peaks. Applying the theory, the resulting equations of
motion are

M0Ẍ + k�D1 + D2 − 2D3 −
q

L − 4
+

L

L − 4
�D1 + D2�	p

−
4L2

k�L − 4�
� q

L
− D1 − D2	� lim

S→�

I

S
−

k�g1 − g2�
2L

	
− 2


−�

�

dx
sin ��X,p,x�
cosh�x − X�

= − M0�Ẋ − qf�t� + Finh

�41�

and

� k2

4L
−

k2

L2	p̈ + �� k2

4L
−

k2

L2	ṗ +
k2

4L
p −

k�g1 − g2�
2L

+ lim
S→�

I

S
= 0

�42�

with

D1 = �
n

eX−nL ln�1 + e−2�X−nL�� , �43�

D2 = �
n

e−�X−nL� ln�1 + e2�X−nL�� , �44�

D3 = �
n

sech�X − nL� , �45�

and

I = 

−S/2

S/2

dx sin ��X,p,x�� k

2�
n

e−�x−nL� −
k

L	 ,

lim
S→�

I � S , �46�

where S is the size of the system. In Eq. �41� no derivatives
of p appear. Therefore the trajectory can only be influenced
by the size of the peaks but not by its dynamics. Equation
�42� describes a damped oscillation of p. The variable X
appears only in the integral I. This is why its influence on p
and the coupling between these two equations are quite
small. A numerical analysis shows indeed that p, which is
initialized with the value 1, oscillates at the beginning and is
damped to 0 after a short time. Consequently, the trajectory
X�t� is identical with the nonrelativistic 1CC trajectory, Eq.
�7�, with �=1. Within the collective coordinate theory, which
simplifies the soliton to a particle, the motion of the spatially
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confined particle cannot influence the peaks which are spread
all over the system. That is why the peak height oscillates
and is damped away without being influenced by X. Since
the peaks do not show any interplay with the motion of the
kink center, they can be neglected in the framework of the
collective coordinate theory.

V. SUMMARY AND CONCLUSIONS

The collective coordinate theory was applied previously
to sine-Gordon ratchet systems with multiplicative inhomo-
geneities. In this work the suitability of the theory for sine-
Gordon ratchets with additive inhomogeneities is shown. It
turns out that even the simplest Ansatz with just one collec-
tive coordinate agrees quite well with the simulations. This is
a difference from the systems with multiplicative inhomoge-
neities. For those systems the kink width as a second collec-
tive coordinate and the exchange between the internal energy
and the translational energy were crucial for the ratchet ef-
fect. For the system with additive inhomogeneities it is
shown that this second degree of freedom practically does
not change the motion even though there is an influence on
the effective potential.

The kink offset as a second collective coordinate instead
of the kink width does not improve the theory either. The
phase shift between driving and offset is correctly predicted.
Furthermore, it is shown that at a certain value of the driving
amplitude a further enhancement results only in a stronger up
and down movement but not in a movement of the kink
center. The effective potential is not influenced by the offset.

In order to improve the simplest Ansatz with the kink
position as collective coordinate, two further degrees of
freedom—kink width and kink offset together—are neces-
sary. The temporal development of both the trajectory and
the kink width agrees better with the simulations than with
just one or two collective coordinates. The parameter values
where the ratchet effect occurs are predicted more precisely.

This proves that for the dynamics of the kink the interplay of
all three degrees of freedom together is important.

For the homogeneous case it is shown with the Ansatz
with three collective coordinates that the kink width oscil-
lates with double driving frequency and does not exceed the
static width as long as the driving amplitude is not too large.
The amplitude of the oscillations of the soliton position is
predicted quite well by the theory. The amplitude of the kink
width is only half of the value in the simulation, but the order
of magnitude is predicted correctly.

It is shown in the full simulations that the inhomogeneity
not only influences the dynamics of the kink but also its
shape. The high, narrow boxes of the inhomogeneities cause
peaks on the kink. However, it is also shown that these peaks
can be neglected since they have no influence on the motion
of the kink.

In the case of the multiplicative inhomogeneities, the
shape of the boxes could be optimized with respect to the
average velocity with the aid of the collective coordinate
theory �17�. This is not possible in the case of additive inho-
mogeneities since a local optimum does not exist. If one
attempts to optimize the system in order to produce a high
average velocity, the region of the amplitude where the
ratchet effect occurs becomes very small and vanishes. Fur-
thermore, the amplitude region that shows the ratchet effect
moves to higher values of the amplitude. In order to get a
high average velocity, one has to choose an amplitude close
to the value where the generation of kinks and antikinks
begins.

The generation of kinks and antikinks which evolve from
the peaks caused by the inhomogeneities is made visible in
the simulations. This effect occurs already for relatively
small values of the amplitude. That is why the region of the
parameters where the ratchet effect occurs and where the
theory is valid is strongly restricted. The simulations are
needed to test if the theory still works or if kink-antikink
pairs are already generated.
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